Alternative Financing for Municipal Embedded Generation (AFMEG) in South Africa

Key Requirements for Pre-Feasibility Studies

1 Introduction

2 Pre-Feasibility Approach

- A Pre-Feasibility study follows the following approach
 - Define the need
 - Site Assessment
 - Technology Assessment and Preliminary Design
 - Energy Production Assessment
 - Electricity Evacuation Analysis
 - CAPEX and OPEX Estimation

2 a) Define the need

• Establish motivation for power project – renewable, solar PV, wind, battery systems etc.

- Municipality Electrical Infrastructure Master Plans:
 - Existing electricity grid / network configuration, status-quo and constraints
 - Outlook on additional capacity recommendations
 - Load demand analysis
 - Planned network upgrades
- Existing Eskom invoicing:
 - Current cost of electricity

2 b) Site Assessment

- · Potential sites identified for projects based on wind and solar resource
- Site closest to the preferred grid connection point reduced grid connection costs and permitting
- Bankable resource data tools SolarGIS, Meteonorm, PVGIS etc.

Wind Resource Map

Solar Resource Map

2 b) Site Assessment

- Site Visit is desirable, but can be completed in the next phase Topography, Geology, Flora and fauna, Human occupation etc.
- Factors to assess in a desktop study terrain, weather, shading/obstacles etc.

Google Maps photo of area and roads

Site Horizon Profile for Energy Assessment

2 b) Site Assessment

GROUP QUESTION:

- How do the following aspects affect / influence site selection?
 - □ Climate / weather
 - □ Topography
 - □ Land Use
 - □ Local Regulations
 - ☐ Site Access
 - Grid Connection

2 c) Technology Assessment and Design

Solar PV vs. Wind – dependent on resource and land availability

- Assessment of major equipment PV modules, Inverters, PV Structures
 - Technology types / categories
 - Suitability to meet the needs
 - Pricing trends (CAPEX and OPEX)
- Design
 - Limited to land available:
 - ☐ Fixed Tilt = 1.4 ha per MW
 - ☐ Tracker = 2.2 ha per MW
 - MV voltage aligned to grid network

Parameter	Value		
Installed DC capacity at STC	43,214.08 kWp		
Installed AC capacity	39,200.00 kW		
Voltage of DC System	1,500 V		
Medium Voltage inside PV Plant	11 kV		
Voltage at Point of Connection	11 kV		
PV Modules	Manufacturer	Jinko Solar	
	Model	JKM530M-7TL4-TV	
	Unit Power	530 Wp at STC	
	No. of units	81,536	
Inverter	Manufacturer	Huawei	
	Model	SUN2000-185KTL	
	Unit Power	175 kW at 40 °C	
	No. of units	224	
PV Structure	Туре	Fixed Tilt	
	Tilt angle	20°	
	Table configuration	2-V (2 x 26 = 52 PV modules)	
	No. of tables	1,568	
MV/LV Transformer (inside PV Plant)	Rating: 5,000 kVA, 0.6/11 kV (No. of units = 8)		
Grid Connection	The PV plant shall connect to the existing Marburg SwS via a new 11 kV Marburg Switching Station.		
PV Plant Land usage	46.5 hectares		

2 d) Energy Production Assessment

Energy Production Assessment Tools – PVSyst

- The energy production assessment provides the following:
 - Design optimisation (compare different scenarios)
 - Loss estimation (electrical, shading, optical etc.)
 - Energy values (MWh) for first year of operation

Parameter	Parameter	Unit		
System peak power	43,214.08	kWp		
Performance ratio at plant start-up (PR) *	88.0%	kWh/m²/yr		
Plant availability	99.0%			
Yearly degradation factor	-0.5%	kWh/kWp/yr		
Specific yield (P50) - year 1 **	1,578	MWh/yr		
System yield (P50) - year 1 **	68,188			
System yield (P50) - 20 years	1,300,885	MWh		
* PR without plant availability and module degradation (see section 3.3.1)				
** Including availability and average degradation during year 1 (see section 3.3.2)				

Energy Production Assessment Methodology

2 e) Electricity Evacuation Analysis

• Define the preferred grid connection solution

- Preliminary analysis of the grid connection solution:
 - Evacuation Line Loading
 - Evacuation Line Voltage Variation / Drop
- A detailed grid study is performed during the next phase to confirm that the operation of the plant is in line with the grid operator requirements.

2 f) CAPEX and OPEX Estimation

- Estimate approximate costs for land, equipment, development, construction and operation of the project (CAPEX)
- Estimate approximate costs of operation
- These estimates provide inputs to the financial model

ID	Parameter	Value [ZAR]		
Α	PRE-CONSTRUCTION	19,148,159		
1	Project Development, Financing etc.	12,765,439		
2	Transaction Fees (Engineering, Legal, Advisory etc)	6,382,720		
В	CAPEX	817,531,408		
_ 1	Civil material and works	28,083,966		
2	Mechanical equipment/material and works	149,993,911		
3	Electrical equipment/material and works *	577,636,125		
4	Others	61,817,405		
a)	Spares - 2% of CAPEX	15,114,280		
b)	EPC Costs including margin - 6% of CAPEX	45,342,840		
c)	General Contingency - 3% of EPC cost	1,360,285		
D	TOTAL PROJECT COST (A + B)	836,679,567		
		(R 19.36 / Wp)		
*	Electrical CAPEX portion represents 65-75% of the total CAPEX for solar PV Plants with breakdown below:			
	PV modules – 27%			
	Inverters, combiner boxes, transformers, MV Switchgear – 22%			
	 Electrical balance of plant (Cables, earthing etc.) – 13% 			
	Grid Connection – 22%			
	Electrical works and installation – 9%			
	SCADA, Communications and Security – 6%.			

Get in touch:

Ryan Roberts: ryan.roberts@iclei.org
Azizat Gbadegesin: azizat.gbadegesin@iclei.org

@ICLEIAfrica / @ICLEICBC

+27 21 202 0381

www.africa.iclei.org